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ABSTRACT

This paper treats the problem of hyperbolicity, change of type and

nonlinear wave propagation in the flow of viscoelastic fluids. Rate equations
for fluids with and without instantaneous elasticity are derived and
discussed. The equations of fluids with instantaneous elasticity are
hyperbolic in unsteady flow and can change type in steady flow. The wave

speeds depend on velocities and stresses. Some estimates of wave speeds into
states of rest are given. For many of the popular models of fluids the
vorticity is the field variable which changes type. The vorticity of all

* fluids with instantaneous elasticity can change type in motions which perturb

rigid ones. Experiments and analysis exhibiting vorticity of changing type
are exhibited. The linearized viscoelastic problem is governed by equations
having the properties of a telegraph equation. The damping is small when the
fluid is very elastic. Elastic fluids have a long memory, a large time

* (Weissenberg number) for relaxation. The damping is rapid when the relaxation

time is small even when the flow is very supercritical. It is shown that
steady flow around a body is of "transonic" type. The linearized problem for

flow over a flat plate is reduced to an integral equation for the vorticity
distribution on the plate. The problem of nonlinear wave propagation is

discussed and the problems of nonlinear smoothing and shocking are
considered. It is shown (by M. Slemrod) that the shocks of vorticity can

arise from smooth data in some models and shocks of velocity in other models.
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SIGNIFICANCE AND EXPLANATION

Viscoelastic liquids exhibit a number of strange and unexpected phenomena

when the influence of elasticity (the "Weissenberg number") is high.

Numerical simulations of high Weissenberg number flows have encountered

considerable difficulties. It is possible that some of these phenomena are

related to a change of type in the governing equations. This paper reviews

recent results relating to hyperbolic structure of equations for

viscoelasticity and the possibility of change of type, which were obtained by

the author and his co-workers.

- . -
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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HYPERBOLIC PHENOMENA IN THE FLOW OF VISCOELASTIC FLUIDS

D. D. Joseph*

1. INTRODUCTION .

The equations of gas dynamics have a hyperbolic structure which

support waves of compression and rarefaction. The linearized theory of

gas dynamics leads to the wave equation in which compression and rare-

faction waves are on an equal footing in that both types of waves may

propagate without change of form. The nonlinear theory of gas dynamics

leads to striking new qualitative understandings of wave propagation.

Initially smooth waves of compression must shock up. Initial shocks Of

rarefaction must smooth out. The equations of steady gas dynamics

change type from subsonic to supersonic when the speed of the fluid at

some point exceeds the speed of sound. The field of flow can be parti-

tioned into subsonic parts, governed by an elliptic equation, and a

* supersonic part, governed by a hyperbolic equation. The problem of

change of type in gas dynamics is called transonic flow.

Quasilinear systems of equations governing the flow of incompressi-

ble viscoelastic fluids are also of mixed type when the constitutive

equation admits an instantaneous elastic response. As in gas dynamics, .,

steady flows of such fluids can change type.

I am interested in the possibility that many effects in the flow of

viscoelastic liquids, as well as difficulties ir numerical simulation are

associated with wave propagation, the nonlinear smoothing of shocks, the •

shock up of smooth solutions and with the appearance of real charac-

ter1stics and a change of type analogous to the sonic transition in gas

dynamics.

The notes for this lecture are a compendium for hyperbolic things 0

arising in the theory of flow of viscoelastic fluids with instantaneous

elasticity.

Fluids with instantaneous elasticity have no instantaneous viscosity

in the same way that Maxwell models have no instantaneous viscosity and .

Jeffrey's models do. For example

*Department of Aerospace Engineering and Mechanics, University of Minnesota,

Minneapolis, Minnesota 55455 .

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041
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D-r
A- + T - 2nD(u] (1.1)Dt

is an Oldroyd rate equation for the determinate part Ot stress T, D/Dt

is an invariant time derivative, D(u] - .(Vu + VuT ), where u(xt) is the .'. -2..--
velocity, A is a relaxation time and n Is the "viscosity". Equation (1.1) .-

is a Maxwell model. It has a purely elastic instantaneous response. On

the other hand "

Dr DD[u]'
A-2 + [ u A D (1.2)Dt - Dt

is an Oldroyd model with a retardation time A. This equation is of the 0

Jeffrey's type. The retardation term produces an instantaneous viscous

response superimposed on the elastic response. A, rather than n, is the

measure of the viscous response to impulsive motion. The most general

class of simple fluids with instantaneous elasticity are those whose

histories are convergent in the weighted L2 spaces of Coleman and Noll.

Joseph, Renardy and Saut (1984), hereafter called JRS, derived the gen-

eral form of the rate equation which is implied by the fading memory

theory of Coleman and Noll. More general theories of fading memory

*i based on different topologies containing, for example, models like (1.2),

- have been presented by Saut and Joseph (1983).

It is probable that most polymer solutions have some instantaneous

viscous response following, say, a model like (1.2) with A 0 0, but per-

haps small. If the instantaneous viscous response is small, say A/A is

small, the smoothing effects of viscosity will also be small leading to

shock structure of the type which is well known in gas dynamics. A "

* theory for such viscous smoothing of shocks in viscoelastic fluids has

been discussed by Saut and Joseph (1983) and Narain and Joseph (1983).

It follows that the study of fluids with instantaneous elasticity ought

to apply to many real fluids which have a small viscous response.

The visco part of viscoelasticity does not mean that the fluid has

a viscous response. It means that the amplitude of impulsive, shock

solutions will decay but that the shocks will not smooth. This property

of flow is not shared by gas dynamics where there Is no damping. When

* the damping is very large (e.g; when A is small), the elastic response is

short. When the damping is small (e.g.; when A is large), the elastic

. . . . .. . . . . .
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response is long. In most problems with damping, even the simple ones

which arise in the one dimensional theory of kinematic waves (Whitham,

1974, p. 62) it is not possible to form a shock without first satisfying

a criterion for a critical amplitude. Such critical amplitude results

are now well known in the theory of nonlinear wave propagation in vis-

coelastic fluids (see Section 13).

There are possibly many works on wave propagation in viscoelastic

fluids. Of the ones known to me, the works of Coleman and Gurtin (1968)

and Slemrod (1978) seem to me to be the most Important. Problems which

perturb uniform flows of Oldroyd ^luids have been studied by Giesekus

(1970), Ultmann and Denn (1970) and Luskin (1984). In these problems the

entire field of flow is either subcritical or supercritical. There is no 'S

problem of transonic type. The possibility of transonic type in the flow

of Oldroyd fluids was first mentioned by Rutkevich (1970), Joseph,

Renardy and Saut (1984) treated the problem of hyperbolicity and change

generally. They introduced the notion that in many models and in all

models on motions perturbing uniform ones, the vorticity is the hyper-

bolic variable which changes type. Yoo, Ahrens and Joseph (1984) tried

to explain the striking results of Metzner, Uebler & Fong (1969) with an

analysis of the vorticity perturbing irrotational sink flow. This type

of hyperbolic flow with zero vorticity in a cone like region and nonzero

vorticity outside was observed in the flow into a hole.

The first detailed solution of flow exhibiting a change of type has

recently been given by Yoo and Joseph (1984). They consider the linear-

ized problem which arises when Poiseuille flow of an upper convected

Maxwell model is perturbed with wavy walls. The vorticity of this flow

will change type when the velocity in the center of the pipe is larger

than a critical value defined by the propagation of shear waves. There

is then a region around the pipe axis in which the vorticity equation is

hyperbolic and a low speed region near the walls where the vorticity

equation is elliptic. They linearize the problem for small amplitude

waviness and the linearized problem is solved in detail. The charac-

teristic nets depend on the viscoelastic "Mach" number, which is the

ratio (M - U/C) of the unperturbed maximum velocity U to the speed of

shear waves C into the fluid at rest and the elasticity number E. There

Is a supercrltical (hyperbolic) region around the axis of the pipe when M

>1. When M >> 1, the diameter of this hyperbolic region is small when
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E is large, and large when E is small. Regions of positive and negative

vorticity are swept out along forward facing characteristics in the hy-

perbolic region. There is rapid damping of vorticity through a narrow

layer to small vorticity in the core when M >> I and the Weissenberg

number W - MvE tends to zero. (The Weissenberg number is proportional

to the relaxation time of the fluid.)

The rate of damping of vorticity decreases as W is increased.

Flows with high M appear to be more "elastic" when W is large in the

sense that the damping is suppressed as the relaxation time of the fluid

is increased.

I am going to discuss some selected tcpics from the aforementioned

papers. I have introduced some new thoughts in these notes. The prob-

lem of flow around bodies treated in Section 11 and the flat plate prob-

lem of Section 12 seem not to have been considered as transonic type

problems before. In Section 12 1 have reduced the linearized supercriti- 5
cal problem for flow over a flat plate to a single integral equation. I

would like to know if this problem can be solved. Various parts of the

discussion of nonlinear wave propagation in Section 13 are new.

I wish to express my gratitude to my colleagues and collaborators

in different aspects of this work; these are Michael Renardy, Jean

Claude Saut and, more recently, John Yoo. I also want to acknowledge

the help which I have received from my students Mark Ahrens, Edmond

O'Donovan and Oliver Riccius. Marshal Slemrod has got a fine result,

right in this ballpark, which appears as Appendix A to this work. Mark

Ahrens prepared Appendix B.

I

...........................................
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2. RATE EQUATIONS FOR FLUIDS WITH INSTANTANEOUS ELASTICITY

It is perhaps useful to try to understand hyperbolicity in fluids

with instantaneous elasticity without choosing special models. We want

to know which phenomena are intrinsic and which are accidental arising ,

only for one or the other of the special models.

A general theory of rate equations for fluids with Instantaneous

elasticity was given by JRS. Here we give a slightly different deriva-

tion leading to the general form of quasilinear problems associated with

motions of fluids with instantaneous elasticity.

Let C t t) - v.t VLt be the relative Cauchy strain where lt(xt)

is the position of x = Xt(xt) at T=t. The determinate stress T may be

expressed by a functional of the history of the Cauchy strain,

t

F " t,C (x,r)]. (2.1)

For the moment I state only that the domain of F is equipped with the

topology of a Hilbert space. Saut and Joseph (1983) show how different

choices of the topological domain of F lead to different types of con-

stitutive equations. I want to make this point again, under (2.4), in the

context of this discussion of the general form of a rate equation. F

depends on the history of C t(x, r) and explicitly on the present time,

perhaps through a kernel function and in other ways.

It follows from differentiating (2.1) that

dr tdCta theorem for alafnot (

dCt1] ( dCti

K(t-.C (x,)) -- (x,)dt (2
tCt- .° • 3)
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where K(t-T,C (x.T)) is a fourth order, tensor valued kernel function,
- t

not too singular, satisfying some invariance conditions arising from iso-

tropy (see JRS). The term - is a derivative holding the history of C

fixed. This term is again a functional of the form (2.1); in the case of

single integral models with a kernel proportional to e-(t - T)/A we have

3F/Dt -i/A (cf. (2.19)). Motivated by this last observation we intro-

duce the suggestive notation

def DF
- -A (2.4)

for a constant A. T is stress-like and A is a "relaxation time".

Saut and Joseph (1983) have shown that the smootness of the kernel

K in (2.3) depends on the choice of the topology of convergence for the

dCt
history C (xT). If -- (x,-) lies in the weighted L (0,-) (fading

_tdt - h
memory) spaces of Coleman and Noll, then the kernel K must have at

least the smoothness which is required for the validity of the applica-

dCt
tion of the Schwarz inequality to the integral in (2.3). If lies in

dt
the (fading memory) Sobolev spaces used by Saut and Joseph (1983), then

various derivatives of Dirac measures can appear in the kernel K. These -

give rise to "viscosity" terms like the retardation term in (1.2). The

fading memory spaces of Coleman and Noll allow only those constitutive
2

equations which exhibit instantaneous elasticity. The L (0,-) fading
h

memory spaces of Coleman and Noll therefore do not form a general basis

for discussion of problems of rheology. They do form a general basis

for discussion of problems of instantaneous elasticity. In the work

-
2

below dor F - L h(0-).

Since the position at t < t of all particles x on the same path

line is the same

d.&t 3-tdt -x + u(x,t) = 0 (25

. .. 
- . .

-.
) .

.. .. d.> . . .t. at (2 . . - ..- . .-5) • .
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we have

dF t at)+
-Ft V at (U.V)V.K - -VUVxt (U V)VL - -t

where L -L(x,t Q Vu(x~t) and Ft- Vxtxt Hence,

dC (x, .0 dF T T
t___ - t T 4 F t -

d tF-F-t Et F LT(x,t)C (xi) -C (x,r)L(x,t) (2.6)

and

(It t dC

t~-~ ):!d)K -k dt Mik(x,t)L (x,t)-t t dtij "ijkL tdtM k pk-

(2.7)

where

ft

MijN~. t) -J.(K~ K~k C~ (x,rT)drT (2.8)

is symmetric in the first pair of indices and L We maUrtpk ax k a rt

(2.8) as

dy
= - M(x,t) L(x,t) - (2.9)

dt -

where M is the fourth order tensor valued functional defined by (2.8).

Together wit~h the equations of motion

du *dvtdv(.0

=- -Vp dv i u-0, (.0

dtS

A
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(2.9) and (2.10) are a quasilinear system in derivatives of u and r. The

stress-like term r(x,t) and the coefficients M(x,t) are of lower order

(see JRS) since they do not involve derivatives of u or T, and have other

required properties. Hence, the system

-Tj M au - =0,
at e ax ijke ax Aij

e k

P[aui au ax T 0
e i

au
ex 0 (2.11)
e

is linear in the derivatives of u,, Tj and p.

'We may decompose the fourth order tensor M Into symmetric and skew

symmetric parts,

Mljke ijke Aijke

where S is symmetric and A is axisymmetric in k and e. We note that

au
ijke ax ijke ek'k

where

1[au au k1
ek 2~ ax ax

and
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Pit P2 [pt + Pu 1  2 A122 + Pu 2  2 A 2puuIA1 1 1 2 + A222 1
2 2 i P2 2-

(A1112  A2 2 2 1 )2  A, 2 1 - 2 ] 0 7.11)

Equations governing change of type in Oldroyd models arise from

those just given under the substitutions mentioned in (2.19). In particu-
I

lar the characteristic surface equation becomes

" T T22 +

+ 2[pUIU 2 - T 12] 141 2  (7.12)

U22 ( T11 + -- T22 + ) *2 -

where we have put [P 1 ,P 22,Aj1 2,A2221 ,A122 1] - [aT1 1,aT22, T12, 12,( - 12)-

8. CONDITIONS FOR A CHANGE OF TYPE. PROBLEMS OF NUMERICAL SIMULA-

TION.

In general the condition (7.11) for hyperbolicity appears to be eas-

iest to satisfy when the speed is large and the normal stresses small, I

or large and positive. For the Oldroyd models (7.11) may be written as

put + (1-a) T (11+a ( ) T22 +TPu2J

2 2 2 2

+ (pU IU2  - T12)2 > 0 (8.1)

We may write (8.1) in dimensionless form by using a scale length and a

scale velocity U. Then dimensionless variables related to dimensional

variables by

[UVT,,Y,M] - [ , u2 12 T I T22 U]
U U ' To ' To ' To C +""

where To- n/A and
I

• " .- . - " ; " .- - :; - -- - ' 1
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pu: - A122, - (Pit + PU) A + [2puu 2 - (A1,12 + A222 )]

2 + A122 1 - (Pi 1 + P22) A - L.O.T. (7.7)

We may apply the theory of 2
nd order quasilinear equations to (7.7).

We look for real characteristic surta'es *(x,,x 2) - const. Let

= (*z,*2,0), then (7.7) generates real characteristic surfaces given by

[pU2 - A1221 - !(p, + P22)]1 + [2puluz - (A1,1, + A2221)]4,,*2

+ [eu - + " 2A21 - ;(P 1 1 + P22 ) ]12 0 (7.8)

We note that if O(x,,x 2) - const. gives a plane characteristic curve

dx2  dx2 I
x,(x,), then *, + *2 - = 0, _ f It ollows from (7.8) that we

have real characteristics given by

dx2  B ± - C= A (7.9)
dx, A

provided that

B2 - AC Z 0 (7.10)

where

A pu, 2 
- A122 1 - (Pit + P22)-

2B - 2puU 2 - (A1 ,12 + A2221),

II

C pu2
2 + A1221 - (Pit + P2 2)

The condition (7.10) tor real characteristics may be written as 6
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streamlines are always doubly characteristic,

dydr 2

Ldx U

The streamlines do not change type. from hyperbolic to elliptic because

dy/dx is always real and never complex. .

For problems of changing type we have to analyze the roots of the -

quartic

a*a, + aa.a + a a2  cal + a. - 0 (7.5)

The roots of a quartic may be factored into the roots of two quadratics.

The roots of the quadratics are real or complex. Real roots correspond

to hyperbolicity with real characteristic directions.

For JRS fluids one of the quadratics has imaginary roots and the

other can have complex or real roots depending on the values of parame-

ter, velocities and stresses at a point. In this situation we encounter

a change of type with real characteristic directions only in certain ---

regions of the flow. The roots which govern a change of type are asso-

ciated with the vorticity. The imaginary roots are associated with the

relation V2* - -C, where is the vorticity and *J is the streamfunction.

The streamfunction is associated with an elliptic operator. Discontinu-

ous initial data for the streamfunction will be smoothed.

The analysis of hyperbolicity in plane steady flows is easiest when

formed in terms of the vorticity 4 , , , where is governed by (6.4)

in the plane 1,2. After a little calculation we find that

pujuk ax ax 2 Pj ax U 2 kjke ;xj x 2 ejke Uxx
jk k k je jk

= L.O.T., J,k,e l 1,2 (7.6)

where L.O.T. stands for lower order terms and Aik is symmetric in j,

and skew symmetric in k. Eq (7.6) may be written as

..7, %
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P(au1 -u,) 0 a -a10

0 P(Gu,-U,) -1 0 -a 1

-CIM 121 I+M I 21  CLM 1212 M 1222 0 0 LU I -U2  0

-aLM 221 1+M222 1  aCM2211 2M,, 0 0 0 L12

Q - 0 0 0 0

(T.3)6

-(u u,) Ea~ct' a~a' +a,a'2 + alct a*)] 0

where

2

a, M1212 - u1 .

as -M22 12 + M11-12 + M1112 + 2pu,,

a, -M22 11 + M222 M1212 MH22 +M1111  11 2  2~1 +,

a, M22,21  M 1211 M1222 M1H12, + 2pu,u2,

In general the roots of' the 6th order polynomial (7.3) are neither all.-

real nor all complex. The real roots correspond to real characteristic

lines across which discontinuities in certain of the variables may propa-

gate.

It Is necessary to Identify the real characteristic directions and

the variables to which they associate. It is clear from (7.3) that
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au , au , au , I 'll a , 0P~ PU j P- 2 ay ax -.-

au2  aU2  au, ap aT12  at,22-+ puT- + p,-+
P P ay ay ax ay

a= Sa ,, a: [ utu au2 + 1 , u2] -- "'
at 1a M111L + 1112L + M1121 + M12 ay T1/

at:1  ax:1  a:1  I ax, ax2  au1 ay

-T u,- - - uL - + M,1212L- + M1221  + M12 2 - T,1/- A

at a,, a: I axu au au, a

[T. MT2 a2. U 2  2  ayU T2at - -a ay 2211 + M 2212 - + "221- + "12.222L

au+ a 0 (7.1) p

where (x1 Ix2) - (x,y). We may write this system as

_q aq+ a~ -
+A- x (7.2)

at,--ax -.ya

where _q stands for the column vector whose components are

[u,,u 2 ,p, 1 1 ,T2 1 , 2 2 ]. The characteristic directions a = dy/dx for steady

flows are determined as the roots of

det IA - l 0-.

This may be written as

I

• I

. . . . . . ... . . .. .. -

. . . . . . . . . . . . .. . . . . . .
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P -- W (t-T,I,II)C-'()dT

a WJ W(t-T,I,II)C(T)dT

-2[W 1 , C

- 2[W,I I l2-'(') + WIl(T

The last terms of (6.9) (under the integral) are of leading order in

hyperbolic analysis because they contain first derivatives L - uI(x.t)

of u (x,t) at the present time. These terms are spoilers because they

lead to third derivatives of u, as In (5.4), which do not reduce to

second derivatives of I. This shows that not every popular fluid model

has a vorticity of changing type.

It may be helpful to drad a distinction between two types of rate .5

equations. The first type among our special examples depends only on

the velocity and the stress. We may regard the stress components as

unknown, to-be-determined, field variables, Equations (6.2) and (6.3).

The other type, like (6.1) and (6.9), has coefficients which are function-

als on the history of the Cauchy tensor. One could say that these equa-

tions are not "true" rate equations because the coefficients do not

depend directly on the field variables and problems based on these equa-

tions must be posed as initial history rather than Initial value prob- 0

lems. Rate equations of the first type are clearly convenient because

the balance equations Of mechanics are also relations among the velocity

and stresses and the whole system of balance and constitutive euqations

is then closed. Points of convenience are not necessarily points of _

principle.

7. CLASSIFICATION Or TYPE IN STEADY PLANE FLOW

In plane flows there are six equations for six unknowns; u1 , u2, Ti,

Tit, tal-a., p. The quasilinear equations which governs the flow of

fluids with instantaneous elasticity may be written as

." ..

. . - . .... .



p t -

K -W11j(t-T,I,II) £,(.T) + W1j(t-r.'III)CU-))dT (6.6)

where W,- aW/Ii, etc. The determinate stress vanishes on the rest

state (CC-C'=1) hence

W (t--r.3,3) W W(t-r,3,3). (6.7)

The rate equation satisfied by .1 may be obtained from (6.4) by dif-
ferentiating with respect to t, using

dC T
= -L (tC(-r) - _ _t)

dC T
=L(t)C-'( T) +C-'(T.)L Mt

dt r tr - -2 tr[C(-r)L(t)]

dli dC1

dI tr-- - t{'(T)L T) (6.8)

dt dt- -

*We find that

T * T + P1 + z 4PL

L L'P 2 + IF,( t)tr[C(tr)L(t)]

* F(T)trLC-(T)LT(t)JJd-r (6.9)

* where

it rw 3W 1

* - J.L at- at-

A0



1~ ~ 112

2 . p ' pk, mp A k X e m e

at [( )( uk) (at!V)Ck -ueuje kj

" E a+1 C , -a jqe(curl j)]kej L2 'mp, m ~kp 2 j

a+1
"Ekej 2 .1mp,e uJ,mp + mp, me uJ,p Tjm,mp p~e

2 mp,e p,jm + Tmp,me p,j + jp,me~p~m

Ijp,mup~me jpme Um,p ijpp,. m,pe
(6.4)

Moreover

kE (curl div T)k - url k j- (c*V) 1 (6.5)

kejrjm k(curl k au 77 ~ Uki

Potential flow with C-0 can be a solution of (6.4) only if the last

bracket in (6.4) vanishes u-70.

The BKZ model is a single integral model which is motivated by the

nonlinear theory of elasticity. Let C(-r) and C-'U,) be the right relative

Cauchy strain tensor with invariantsS

(1,11) -(trC(dr),trC'U(-))

and "strain energy" A

The determinate stress Is given by0
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E~I ( +TD a - + T2D (6.2)
dta2~D +~ L jf

The upper, lower and corotational Maxwell model correspond to a-1,-1,O,

* respectively.

*We may say that the JRS models are of the Giesekus type when

T + Q(

with mobility constant ai. The model actually proposed by Giesekus

(1982) has retardation time on the right side which we put to zero for

instantaneous elasticity, c.[2 is added to the lef t side and a 1

AIdT V uT]+T+C,2
~Vu r- r ct 2 n2D (6.3)

Equations of the form (6.1), (6.2) and (6.3) permit hyperbolic waves

of vorticity. The last term on the left of (5.4) may be expressed as a

second order derivative of the vorticity

Ckej jmpq qpme ke ~ jq (cur

2 mp k, mp 2'kej'pqr' jmpq r,me

Then (5.4) may be regarded as a second order equation for the vorticity.

The vorticity equation for the three parameter family of Oldroyd

models can be written as follows.
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0

+~tt'k 2 Lr"dt'k Ueu4~k4Ij]_kLjrI4miun.pmZ

1i( at + u*V)(i*V)u k - (a-V)r k -ueujeck,j]

+ EM u(M u )kej jmpq,e q,pm kjmpq, muq,p ,e

-u 'tqp *(u + ) *- me (5.14)
p,e jpq p~q jq~p ,e Am

clef a
wher C.) = (-). Equation (5.4) reduces to a second order equa-

tion for the vorticity plus lower order terms whenever the last term on .

the left of (5.4) can be expressed in terms of second order derivatives
of j(see (6.3)). Potential flow is possible only when (5.14) is satisfied

with C-0, u-VO.

6. SPECIAL MODELS

Special constitutive models of fluids with instantaneous elasticity

arise f rom (2.9) by choosing special forms for the fourth order tensor M
dand the stress-like term r. In fact i t for all single integral

models with separable kernels in exponential form with time constant A.

We will consider four special families of constitutive models.

(1) JRS models (introduced by JRS (1984)).

(2) Three parameter family of "Maxwell" models Introduced by 0

Oldroyd.

(3) Models of the Giesekus type.

(14) BKZ models.

The JRS models arise when the fourth-order tensor M is expressed by theS

most general expression which involves second order tensors. This leads

to

_t T.D 1 ()T41-
-t - PD DP -(A A (6.1)

for an arbitrary second order tensor P; the fourth order tensor A has
Talready been Introduced. Coleman's thermodynamics implies that P -P

The Oldroyd models with three constants arises from (6.1) when -

The Oldroyd models with three constants arises from (6.1) when

P- a -0 -11 a S1, - and A chosen so that
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dient u = V$. Then j = curl u 0 0. The velocity u determines the path

lines . t (x,T) and the past values of the relative Cauchy strain Ct(x)...

This gives rise, through (2.11), to the values r(x,t) of the extra stress

at the present time t. It is not guaranteed that this computation will

lead to a T(x,t) such that curl dv r- 0 at each and every point at

which "O.
Whenever u - VO there are two more equations than unknowns. Evi-

dently only certain special potential flows are compatible with (5.1). -

Uniform motions, say u - e U, for constant U, have T - 0 and are always

potential flows.

Another form- of the vorticity equation is fundamental in the study

of hyperbolicity and change of type. We first apply the substantial de-

d d
rivative - to (5.1). Then we apply curl to (2.10), eliminate curl

dT
div -= and find that

7 d2j
Pd-z - curl div (ML + _2,+ 0 (5.2)

where

L- Vu, (Vu)j u

j"curl u,

O - curl div ,

d dT .+

- (curl div r) - curl div -, (5.3)

d du d0, - p (curl- curl u)

Third derivatives of u are all on the left side of (5.2). The right side

contains second derivatives of u and r, at most. (02 is essentially a

second derivative of T.) Equation (2.9) shows that T and u are of the

same differential order, so that the left side has third order deriva-

tives of u and the left side has second order derivatives of u, at most.
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in 505 glycerin and 49% water solution) using a rotating cylinder appa-

ratus. For Maxwell models with a single relaxation time we have

G(O) - nl/A, where n is the viscosity and A is the relaxation time. There

are some papers which report viscosities and relaxation times which are

obtained by fitting data with some impusle experiments (for example, see

Papanastasiou, Scriven and Macosko (1983), Dodson, Townsend and Walters

(1971), Laun (1978). This type of rheometry suffers from two defects.

Usually a special form for the kernel in the linear theory is assumed.

The kernel is represented by an exponential or by a sum of exponentials. 0

A more serious defect is that it is usually assumed, wrongly, that the

early time response to impulse which gives G(O) satisfies an overly sim-

plified asymptotic (for large time) theory (see Narain and Joseph (1984)

for a full discussion and remedy for this defect). From the impulse

data reported in many different papers we have estimated that wave

speeds for water-based polymer solutions are of the order of 10 cm/sec.

The wave speeds of polymer melts are of the order of 100 cm/sec. At

the same time, the large viscosities of melts reduce the possibility of

achieving large velocities. Hence for the flow of melts we expect that

the flow is usually subcritical M < 1.

We (I, Oliver Riccius and Gordon Beavers) have developed a wave

speed meter which appears to give direct, reproducible values for C. A

patent has been applied for.

5. VORTICITY

Some important special models give rise to a hyperbolic vorticity

equation. It is of interest to derive the equation for the vorticity

without making assumptions other than that the fluid has instantaneous

elasticity, i.e., the quasilinear system (2.11) governs.

The vorticity j satisfies

l--
P(2t -j + u'Vj) =p.l'Vu +curl div _.(5.1) '

ate

Equation (5.1) is satisfied by q - 0 if and only if curl div T = 0. This

condition is always satisfied by Newtonian fluids for which

T = n(u + VuT )  for a constant viscosity n giving rise to

curl divt - nV 21. In this case potential flow is always a solution of

(5.1). More generally we may verify that potential flow u = V0,

V * C'(x) is a solution of (5.1) if and only If div I is the gradient of

a potential. Given the potential 0 we may obtain the velocity as a gra-
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C lim
k-" k

There may of course be more than one wave speed. If C is not real there

* will be rapidly growing solutions. The reader may see more details of

this type of analysis in the studies by Rutkevich (1969, 1972) of Oldroyd

models.

4. WAVE SPEEDS 1I, PHYSICAL

The subject of gas dynamics would be in deep trouble if it were not

possible to know the speed of sound. This type of deep trouble should

be a concern in the study of hyperbolicity in the flow of viscoelastic

fluids. In fact the way to know if a fluid has instantaneous elasticity

is to show it has a wave speed. Now showing that a certain fluid has a

wave speed is not easy. First of all, there are many fluids for which

- there are no wave speeds. These common cases are for fluids like
*. Newtonian ones, or even viscoelastic ones with a big viscous response

* (say, A/A is not small), which do not have an instantaneous elastic re-

sponse, or a predominantly elastic response to impulsive data. Secondly,

the fluids which admit a wave speed admit infinitely many wave speeds.

Just as the speed of sound in a gas at a point depends on the thermody-

namic condition there, a wave in a viscoelastic fluid at a point depends

on the velocity and the state of stress there. So each problem gives

rise to its own field of wave speeds.

The simplest type of wave propagation is into a region at rest.

The wave speed for this is

C G(O) (4.1)

where G(O) is the instantaneous value of the shear relaxation modulus

G(s). In fact all kinds of small amplitude discontinuities will propa-

gate with this speed, jumps in acceleration (Coleman and Gurtin, 1968),

* jumps in velocity and even in displacement (Narain and Joseph, 1982).

* The same propagation speed (4.1) holds for waves propagating into regions

undergoing rigid motions. We shall show that flows which perturb rigid

- motions go supercritLical when U/C > 1. This wave speed is a fundamental

* material parameter. There are at present no rheometers for measuring

" G(O) (or C) and there are no tables of values. E. H. Lieb, (1975), In his

Ph.D. thesis, measured C = 8.0 cm/sec in one fluid (carbomethylcellulose
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~ i [ae_ 1
ek 2 i ax ax " C km %!

Lk k ek j

can be expressed In terms of the vortiolty 1 - curl u. Bernard Coleman

has shown that his thermodynamics imply that the fourth order tensor S

is derivable from an energy and, as a consequence

Sijke " keij

3. WAVE SPEEDS I, THEORETICAL

The quasilinear system is called evolutionary if the Cauchy initial

value problem for perturbation of arbitrary motion is well posed (see

Gelfand, 1963). We look at periodic initial data whose period is so

small that r,u,p are essentially constant over the period 2w/k, k-kIl

over which

(6r',u,6p) - (a,v,w) exp ik-x

are rapidly varying, k*- . We seek propagating waves of the form

(6r,6u,6p) - (o,v,w) exp i(k-x+wt) (3.1)

and (a,v,w) depend only on the components of u and M which appear as

coefficients of derivatives in the quasilinear system (2.11). The result-

Ing equations are then divided by k and the right side of (2.11) vanishes

as k * *. This leads to the homogeneous equations for the components of

0 def
(a,v,w) with k/k - n fixed

+.1 1

+ . a 0(1) (3.2)
Lk ~Jij Mijke kfle k

Yen - 0

The homogeneous system corresponding to (3.2) can be solved if and only

If the determinant of the coefficient vanishes. The system is evolution-

ary If there are real wave speeds
.•.. - . .. + .- -.. .-o - - .. .. . -+. +-. . .o•. - ... . . ..

p'. ,. % " -. °. ° -. . .. - - -. . ..... -,..'..•"..+. . . .. .... + . • .. . -. .

.. s,: ','- .'- '/'+ " ', " " "- " " ." " ." +'''' '-'- -'.' " -
o

"- " " .,. .".' -".".-.-. .".".".. . ."." -".
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(8.2)

is the speed of a wave of vorticity into a fluid in uniform motion. The

criterion (8.1) for hyperbolicity

2u + !0-a) - 2014+a) - 1] [1+a)l + (a-1)-1 + 1 -M2v]

+ [MXuv - [] 2 > 0 (8.3)

depends only on the viscoelastic Mach number M (and the parameter

ac[-,l]). When a - I (upper convected Maxwell model), the criterion

(8.3) can be written as

M3[v 2(1+o) + u2 (1 Y) - 2 Tuv)

- (1+Y)(1+0) + r2 > 0 (8.4)

This criterion is satisfied for high speed flow if the stresses o,Y,T are

not large and of the wrong sign.

The vorticity equation changes type at points at which the right

side of (8.1) or (8.3) vanishes. Numerical simulations of problems of

changing type can be very difficult. For example numerical simulations

of transonic flows have only become satisfactory in recent years and

they are still being improved. Problems of the transonic type can be

expected in numerical simulations of the flow of viscoelastic fluid.

Steady flow of the Oldroyd fluids (6.2) is governed by the follow-

ing system of dimensionless equations

div u - 0,

M(u'V) u + Vp - div r = 0,

u'V - a(DT + D) + - T - D = -/W (8.5)

where

W UA/d

..-.... .. .-. ... . .. . .. ....... . ..- *-o.*-. * . .... . --'
" .............. ' l&aN l:u-' aa "- •".... ".............. -... ... ,
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* is the Weissenberg number, which may be regarded as a dimensionless

relaxation time measured in units of d/U. Stresses relax slowly when W

* is large. The fluid has a long memory.

The high Weissenberg number problem is that people doing numerical

[ analysis can't get answers when the stress levels are high. This prob-

I" lem is evidently independent of the "transonic" problem of change of

*. type. Most of the computations in which one encounters this problem are

for flows without inertia, p - 0. Yoo and Joseph (1984) also encountered

this problem in high speed flows involving change of type. They found

that regions of positive and negative vorticity decay rapidly when W is

small (even if the "Mach" number is large). When W is large the super-

critical regions are more "purely" hyperbolic in that the damping of the

Svorticity is suppressed. We have something like a telegraph equation

with damping proportional to 1/W. (See (12.19).

Though the high Weissenberg number problem and problems of change

of type are independent they may be related problems in certain special

cases. Though flows without Inertia will not ordinarily change type, the

* criterion for change of type wherein B2 - AC changes sign can be inter-

* esting even when p - 0.

For the upper convected Maxwell model (a = 1) we find from (8.1)

that when p = 0

B_ AC t -1+ 2 + (8.6)

The equations for steady flow are elliptic when this is negative. In

fact, this quantity appears to approach zero very rapidly as A (or W) is

increased in numerical integrations of steady flows. In fact, B2 - AC is

always negative for the upper convected Maxwell model

S- e t)/AC (T)dT. (8.7)t

Since C t has positive eigenvalues, the principal values TI, A +

are positive and therefore

.. . . ...... ..... ......... . .... ..... .......
" . . . . . .,- . .- " ...... t...I- °.,-. , ... " " ".........- - --.. .",. . -.... -,-..'- . ." .. .- '. ."
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1 -i
de t 0. (8.8)

In numerical integrations using finite elements or finite differences,

values of i and u i are obtained from discrete steps in which the cri-

terion (8.8) may be violated. In doing numerical integrations one should

verify that the condition (8.8) is not violated.

Some constitutive models, like the corotational one with a - 0 may

undergo real change of type even when p - 0.

People doing flow computations for viscoelastic fluids are able to

go to higher Weissenberg numbers when they have constitutive equations

with more Newtonian viscosity (non-zero retardation times). This obser-

vation suggests that viscosity methods for dealing with problem of

change of type and shocks could also be useful for solving the high

Weissenberg number problem. So far however the people doing numerical

works have not used the viscosity method In the limits of small viscos-

ity.

9. LINEARIZED PROBLEMS OF CHANGE OF TYPE

Up to now our study has been exact and fully nonlinear. We may

advance our understanding of the problems of vorticity of changing type

by considering simpler problems which arise under linearization.

We first identify a class of motions, say motions in the plane or

axisymmetric motions. We find some special exact solution of all the

equations which fall in the given class. Usually this special solution

is featureless, like uniform flow, flow into a sink, flow in a channel,

flow between cylinders, extensional flow and so on. The featureless 0

solution does not exhibit the unusual features of change of type. We

then perturb all the equations around the special one with perturbations

in the given class, and we linearize. This leads us to linearized prob-

lems with variable coefficients depending alone on the special solution

and not on the perturbation. We analyze the linear perturbed problem

for hyperbolicity and change of type. The equations for the characteris-

9tics are given by (7.10) where A,B,C are evaluated on the unperturbed

special solution.

The procedures of linearization are such that the characteristic

directions are the same for each and every linear problem perturbing the

GL
......................

. . ..
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special one. The characteristic surface' for linearized problems are a

gift, since nothing beyond the special solution is needed to compute

them. We can know which are the elliptic regions and which the hyper-

bolic regions of flow cheaply, but to find other properties of the per- 0

turbed flow, say isovorticity and streamlines, we are obliged to solve

linear PDE's.

JRS (1984) treated the linearized problem for a change of type in

shear flow and extensional flow for the family of Oldroyd models char-

acterized by the parameter a [1,1]. They also treated sink flow in

the plane and circular Couette flow of an upper convected Maxwell model

(a-1). They identified the regions of subcritical (elliptic) and super-

critical (hyperbolic) flow, but they did not compute the characteristics

or solve some boundary value problem. Shear flow u - Ky, K is the rate

of shear, is hyperbolic outside a strip centered on y - 0. Extensional

flow (uv) - s(x,-y), s is the rate of extension, is either hyperbolic

outside an ellipse (where u and v are large) or inside a region bounded

by branches of a hyperbola (x2 /A2 ) - (y2/B') < 1 (where the velocity need

not be large. Sink flow with radial velocity ur = -Q/r (potential flow)

is hyperbolic when the radius r is small --

1/2

... r < [AQ(-.Q-2)]

provided that the source strength Q > 2n/p, where n is the viscosity.

Couette flow outside a rotating cylinder of radius a is hyperbolic in an

-. annulus whose inner radius is either a or is greater than a, depending on

conditions. When the inner radius of the annulus of hyperbolicity is

greater than a we have another example where the region of high speed

flow is elliptic and regions of lower speed are hyperbolic. The varia-

tion of the stresses is important.

Yoo, Ahrens and Joseph (1984) have tried to explain some striking .

experimental results of Metzner, Uebler and Fong (1969) with an analysis

of the vorticity perturbing irrotational sink flow. The main point at

issue in the experiments of Metzner, et al., is that they observe a coni-

cal region of zero vorticity. Outside this region the flow is rota- f_.

tional. If we accept the experimental results at face value, we must

- conclude that there are surfaces across which some derivatives of the

vortLcity are discontinuous. This type of behavior says "look for hyper-

bolicity and change of type." Such a field could not be supported by an .

. . .3 --. . LZ. . .
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elliptic vorticity field. "

In the experiments of Metzner, Uebler & Fong (1969) a fluid Is

sucked from a pipe of large diameter through a sudden contraction. If

the hole Into which the flow goes is small the problem may be thought

to be a form of sink flow. Because there are boundary walls, the flow .

through a sudden contraction Is not a sink flow In a strict sense. We

shall imagine first that the flow into the hole Is not strongly Influ-

enced by the walls of the large pipe. We then have a hole In the semi

infinite region above a plane. This flow is then regarded as an axisym-

metric perturbation of sink flow without boundaries. The characteristic

surfaces for the vorticity of all axisymmetric linearized problems per-

turbing sink flow can then be obtained by integrating the differential

equations for the characteristics. Yoo, Ahrens and Joseph then tried to

determine If the characteristic surfaces computed in this way could be

the locus for the discontinuity in the derivatives of the vorticity

observed in the experiments. It is i.portant to verify that the charac-

teristics are cone like in the region where potential sink flow was

observed and that the region of potential flow is in the spherical

annulus of hyperbolicity. These issues are addressed below.

Metzner, Uebler and Fong (1969) consider high speed flow of viscoe-

lastic fluids into a sudden contraction. They say that "A tentative

analysis of the observed velocity field suggests the flow upstream of

the small duct to be radially directed toward the origin of the spheri-

cal coordinate system. If this is so the continuity equation gives

ur 2 =l f(e). (1)"

They actually measure velocities in the cone and they report that their

measurements were accurate and that f(8) may be taken as constant when

O 5 e 5 100. They also write that u a u0 - 0 in the cone. Outside of

the cone there is secondary motion and nonzero vorticity.

The nature of the comparison of theory and experiment, explained in .

the captions of Figs. 9.1 and 9.2, is discussed in greater detail in the

paper of Yoo, Ahrens and Joseph (1984). It turns out that the regions of

hyperbolicity are model sensitive. Using the measured values of physical

parameters in the equation one finds that the observed potential flow ,

does lie in the hyperbolic region (some points are outside the hyperbolic

region in Fig. 9.2(b)). The characteristic surfaces are cone like in the

regions where potential f low was observed.

-+- ,'''. ' . -.' . .- -, - .. ':. .'- "i L - -.- -i ? - '.. . - . . .-. .- - -- "..*-..-.*.-*.- - .- . • .. • i- .---' -- J -" -'"'"-..",-"" " - "- - ' [ -.- -.- ' '." -,- -.- ' ',-. ' . - - ; : --: ''_ '.>_-.-
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00

(lower convected)

S Hyperbolic

Orw/2

r*0 10 20 30 40
cm

C (corotational)

O7r/2 J13ipc

r*rj* 0 10 20 30 40
Cm

8=0~

C (upper convected)

S Hyperbolic

8: 7r/2

0 0 20 30 40-
Cm

~ ~j. Metzner, Uebler & Fong (1969) measured potential.
flow In the sectorial box designated S. The cross-sections of characteristic surfaces of revolution
which are tangent to the cone of semi vertex angle
100 at the origin are called C. There are two such
surfaces of revolution.

. . . . . . . . . . . . . . . .7 . ..



29

.- .. f SaNV FLO %Vl.. -_. _ i i-L2iw

Fig. 9.2. Schematic diagram of flow into a sudden contraction

(Metzner, Uebler and 7ong (1969)). The vorticity
appears to vanish in a cone with nonzero vorticity
outside. Accepting this, a jump In some derivative

of the vorticity on the cone is required. The --

measurements verifying potential flow were taken in a

cone with 0 - 10* and at a certain value in and
out of the pipe. The regions where potential flow
was measured are in the sectorial boxes shown in
Fig. 9.2.

We regard the comparisons of theory and experiment in
Fig. 9.2 as exploratory and not definitive. It is of
course striking that the experiments of Metzner, Uebler
and Fong (1969) do appear to involve a vorticity of
changing type. It would be interesting to see if this
striking type of experimental result could be repeated
by other investigators using different fluids and
experimental arrangements. We hasten to add that the
Separan solution used in the experiment is not an Oldroyd
model and surely cannot be characterized by a viscosity
and relaxation time. In fact only special models give
the vorticity precisely as the quantity which changes
type. We have already remarked that models with true
viscosity; e.g., retardation times, will smooth discon-

K" tinuities, with only a little smoothing if the retarda-

tion "viscosity" parameter is small. Probably all the
polymer solutions used in experiments have some small
smoothing. In -iew of all these uncertainties in theory _

and experiments it would be premature to make strong
claims.

.- . " -.
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10. CHANNEL FLOWS WITH WAVY WALLS

Yoo and Joseph (1984) solved the problem of flow of an upper con-

vected Maxwell model through a channel with wavy walls linearized for

small waviness. It is easy to find an exact solution of the equations

when the walls are flat. The velocity profile is the same quadratic one

that one finds in Newtonian fluids. There are some normal stresses

which are absent in the Newtonian case. This Poiseuille flow is per-

turbed and linearized. The characteristics and regions of hyperbolicity

can be computed without specifying the nature of the perturbation. Yoo

and Joseph went further. They used a specific perturbation, the ampli-

tude of the waviness of the walls. They defined the linearized problem

for small waviness and solved it numerically. The Yoo-Joseph paper

gives the first actual computation of a flow with change of type.

We are going to outline the analysis and some of the main results

of Yoo and Joseph. We shall express the equations in terms of the
2I

"Mach" number M - U/C and the elasticity number E - nX/pd 2 (this is in-

dependent of U). The Weissenberg number UoA/d is given by W M M/E•

u+ v - , (10.1a)

uux + + - - 0x - T - 0 (10.1b)
x y y

uVx + Vvy jR1(Py Tx Yy) -O (10.1c)

uGx + Vy - 2(oa+)u - 2 uy a ,E, (10.1d)

WE

UT x  VITy ('Y+l)Uy (0+1)Vx = TE (10.I1e)"

x y x M/

uY V - (1v - (+1)Vy - - -. (10.1f)

x y x y M',

We shall seek and find a solution of these equations satisfying no slip

conditions at the walls

-. . . *...o

* . I . . . . . . . .

-.. ............ .. ........-..... -............ ...............- :: .... :.



31

u v -0 at y c ( sin nx) (10.2)

with symmetric streamlines

au.v -0at y -0. (10.3)

It Is noteworthy that our solution is completely determined by data

(10.2) and (10.3) on the velocity alone. It Is not necessary, and It

would be wrong to prescribe more about velocity or stresses. The vorti-

city w, - curl u Is related to the streamfunction

w - curl u -2 -9 + 31 e z(10.4)

where w(x,y) satisf ies

(M u2-a-l)w + 2(Muv-th~w + (M2V1-y-1)W
xx xy yy

P + W + P + M+ W

" Uv)(0 +Y T~+ + (U +V )(y -aX-y xy xy+ xx+ yy y x yy- xx

" aou + 2Eu + Yu a av -cv -Yv -0.
y xx y xy y yy x xx x xy x yy

(10.5)

Equation (10.5) may be written as

*wx 2Bw xi + CW + L. 0. T. -0 (10.6)

where the terms L.0.T. are of lower order f'or hyperbolic analysis (see

JRS, 19814). Characteristic directions
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/ w -Cd! B
dx A A

A- M~u 2 -a-I,

B M2uv -

C - MYv - - (10.7)

for the vorticity exist whenever

def S
Z 2 _ 2M2 Tuv _ (1+Y)(I+a) + M2v2(1+0) + M2u2(1+Y) > 0. (10.8)

The expression (10.8) is expressed in terms of unknown velocity and

stress fields. The criterion (10.8) for hyperbolicity can be satisfied in

some regions of flow and not in others. The border E - 0 between the

elliptic and hyperbolic regions of flow is like the sonic line in gas

dynamics. Across this line the equations are said to change type.

Equation (10.1) and all the equations of this section are general in

t i3t they apply to every plane problem, not just the channel flow prob-

lem introduced in Section 1.

No.4 we shall solve the governing equations for flow inl a channel

with straight walls E = 0. a,.

(Uo,Vo) = (1-y',O),

(pO.,T) = -2M(x,y)/E, .

(o, y') (8M 2Ey2 ,0),

- y (10.9) - .

.rwn ba3ic notion depends exclusively on the Weissenberg number W - M/E

measuring the size of stresses. The solution (10.9) is relatively fea-

tjreless and, in particular, it gives no indication of hyperbolicity.

Now we consider any plane perturbation of (10.9). The problem with

wavy walls is one such perturbation, but there are infinitely many

ij ..
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others. We may linearize the formula (10.3) for the characteristics of

any flow slightly perturbing the Poiseuille flow (10.9). The charac-

teristics for all these perturbations J
-2y,/E' y 2-1) 2 - L4Ey 2 - . .

dyx I
dxM -

2 -1) 2 + Ey2 +1(0.)

I, 1

are defined in terms of quantities defined for the basic flow (10.9) and

are given once and for all, independent of the perturbation.

Equation (10.10) shows that flows perturbing plane Poiseuille flow

can exhibit a change of type with a "sonic" line E - 0 given by

1

-(y2) _ (y 2_1) 2 - 2Ey 2  - = 0 (-1 S y S 1).

Since E(y 2 ) is monotonically decreasing, it has a maximum at y 2 
- 0 and

Z(0) - 1 - 1 > 0

if and only if the viscoelastic "Mach" number M > 1. The "sonic" line

across which the flow changes type is y - y where E(y*z) - 0

- -./1 1/2-
2S

. ±[ 1 + 2E - 2 E + M2]

The linearized problem for small E is

U +v - 0, (10.11a) - -x y

19
(1 -Y)u x - 2yv + ,-(p-O -ty) - 0, (10.11b)

I - 2) - 0, (10.1 1c) .

-Y. -

(1-y')O I 6M'Eyv 2(8M2Ey2+1)u x  y 4Myuy /E+o/M./E - 0,
x y

(10.11d)

. . . .. . . . . . . . . .

.. . . -
. . . . . . . . ... . . . . . . . .
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0-Y
2 ) Y x 4MYv xVIE -2v y YIV 0, (10.11e)

0 -y') . - 2Mvv/E + 2yY - (8M 2Ey2e1)v x- u, y r-/MVE -0 (10-11f)

where

u(x,*1l) -2 sin nx

v(x,11) 0,

v(x,O) -u y(x,O0) = 0. (10.12)

Yoa and Joseph solved the equations (10.11) using only the velocity data

(10.12) and the method of separation to reduce these equations to ordi-

nary differential equations in y. The ordinary differential equations

were solved numerically. The vortIcity

det
W V - u -V 2  (10.13)

satisfies an equation

[(2)2 -8y
2 

-E W y-j 2.1- P/]

1( -Y - E -0Wxx + 4 yxy +x y2

x yy xx y

of changing type whose characteristics are given by (10.7).

In Figs. 10.1, 10.2 and 10.3 we have graphed vorticity and stream-

lines for Ml 10. In 10.1a and 10.2a we superimposed characteristics

(light) on zero vorticity lines. We first observe that when W is small

the decay af the varticity Is rapid. When W is large the vorticity

decays only very slowly with oscillations all the way to the center. V
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2. FLOW OVER A FLAT PLATE

The problem of flow around a frlat plate could be thought to be

loser than flow around a body to a perturbation of uniform flow. In

act, the theory of slender bodies In aerodynamics is a perturbation of a
niform fluw which is perturbed less by slender bodies than by fat ones.

he aerodynamic theory works well, but only because of the flow follow-

ng condition in which the fluid is required to slip along the slender

ody. In this chapter I am going to give an exact supercritical theory, a
alid for all fluids with instantaneous elasticity, such that the vorti-

ity is prescribed arbitrarily along the flat plate, with a vanishing

ormal component of velocity on the along the flat plate, with a vanish-

ng normal component of velocity on the plate surface. Presumably the

o slip condition on the plate can also be satisfied by choosing the cor-

ect vorticity distribution on the plate. In the nonlinear problem there

'ill be a diffusive subcritical region near the plate and a "transonic"

urface outside where the viscoelastic Mach number passes through one.

his type of Important problem has yet to be considered and solved in

he theory of flow of viscoelastic fluids.

We now consider two dimensional flow past a flat plate. The plate

s on the half line y - 0, x Z 0. The velocity components corresponding

o (x,y) are (u,v) and there is only one component

av au € = ax ay (12.1) p .

f vorticity. The velocity components

(u,v) - [ 'a- (12.2)
~'y .x]

ay be obtained from a stream function Y,. We suppose that the velocity

i,v) vanishes at infinity and that

(uv) - (-U,O) on y 0, x Z 0. (12.3)

The vorticity of the perturbed flow satisfies

.....

. .... - " -
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UNIFORM
FLOW

BODY DISTURBED FLOW

ZERO 
<DSY

VORTICITY

M U/C,

c- /G6-75 Y=_ (i42l) -hx

Fig. 11.1 Leading characteristics for vorticity in a plane
uniform flow.

TERMINAL
VELOCITY

VOLUME

Fig. 11. 2 The jump in the terminal velocity for an air
bubble rising in a liquid. The jump can be
large, say a five-fold increase.
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y-d -

where d is a constant and U is in the direction x. The characteristics 0

form a net of straight lines.

if we suppose that a small two dimensional body perturbs uniform

"1ow when U > C then there would be an undisturbed region in front of

the body which could not be reached by disturbances of the vorticity 0

traveling at velocity C. In a linear theory the first changes in the

vorticity would occur across the leading characteristics which form an

angle like the Mach angle of gas dynamics (see Fig. 11.1). We could call

the undisturbed region of uniform flow a "region of silence". 0

No one has yet solved a problem of supercritical flow over a body,

even in the linearized case and no one has looked for a region of silence

!n experiments.

An air bubble rising in a liquid will reach a steady terminal veloc-

fty. The larger the bubble the larger is the terminal speed. Astarita-

and ApuZZO (1965) were the first to notice that the terminal velocity of

the bubble is not a smooth function of the bubble volume. There is a

critical volume which is associated with a jump in the terminal velocity,

.is in Fig. 11.2.

This phenomenon has also been studied by Calderbank, Johnson &

Loudon (1970). The fluids used in these experiments are water-based

polymers. The lower value of the critical terminal velocity ranges from

0.1 to 10 cm per sec. These values are not unlike values which we think , -

are typical for wave speeds in these polymers (see Section 4). The rea-

-)ns for the abrupt rise in the terminal velocity are not understood,

Maybe the abrupt change is associated with a change of type. Then we

might expect to see an abrupt change near M = 1. For Maxwell models M

- RW where R is the Reynolds number and W is the Weissenberg number.

Zana and Leal (1978) give values of RW which vary by decades at critical-

It y. Their method of calculating was not clear. They seemed to have

ijei some normal stress data which could give very inaccurate values for

W. Ir trxey are nearly right it will be hard to support the idea that the

ibrupt rise is associated with a change of type. The problem Is open.

To settle thl3 problem we need to have accurate values for the wave

velocity used In experiments.

. . . . . . . . .. . . . . . . . . . .. . .

~~~~~~~~~~~~~~~~~~~~~~..'.1 .- 1-:'. . ... ... ' .. . .- '--.' . -... . ." •...-.-. ... . .. .. . .- ,..-,. , '.. -'
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qua G'(O) 1 IX +x l( IxdXI=--

+ V2  : GXX]iz dx (11.12) -

The analysis of supercritical flow is conveniently framed for equa-

tions of second order. We differentiate (2.12) with respect to x and

rind that

aj G"(O) + G"(O)
(Ma-1) T - UG-( 07 x -V 2 j UrG() 0

1 GO JXJGw[ ] V 2 + 1 GII[jK]i d X. (11.13)

This equation ( 11.13) changes type from elliptic to hyperbolic when

K2
-pU

2/G(O)-

increases through one.

For Maxwell models (11.13) reduces, using (11.4J), to

A] V, 0P (11.15)
[P2 T]X 2

2  A ax -0

this equation changes type when M2 
=U

2/C2, C2 
=n/pA increases through

one.

The vorticity of steady flows with instantaneous elasticity perturb-

ing uniform flow will change type from elliptic to hyperb-lic when the

ratio of the velocity of the free stream to the velocity of propagation

of shear waves

into a fli'l at rest exceeds unity. Characteristics for vorticity in

plane flow are given by
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p[ 1 U(t- )Aj 0d (11.7)

The x derivatives under the integral may be replaced with X derivatives.

Equation (11.7) shows that states of uniform vorticity are solutions of

the equations of motion of fluids with instantaneous elasticity which

perturb uniform flow. Potential flow Is possible.

For steady flows it is convenient to change variables in the inte-

grals. We write

X x - M-r), dX Udtr (11.8)

Equation.(11.3) may be written as

U =G(0)Afu(x)J * U -a A2j(1) dX (11.9)

Equation (11.6) Is now

pU -curl div T(1.0

and (1.7) becomes

which, after Integrating the first term under the integral by parts,

becomes
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- U - = G(O)A[u(xt)] _ )Au(x,) dA (11.3)at 3xJ
•- o. .

where the last term is of lower differential order for hyperbolic analy- .-

sis.

For all the Oldroyd models the perturbation of uniform motion leads

to the linearized Maxell model with

G(s) = j exp(-s/A) (11.4)

The rate equation for a Maxwell model in a flow perturbing uniform flow 0

is

a]T 3T n zXt)

at ax. -

The equations or motion are

P[ftu U au] =Vp div

The vorticity j = curl u satisfies S

p[L+ U = curl div . (11.6)

Using (2.1) and curl div A[u(x,)) = (

where

a2 2  2 32 3

A X3 V2 V2 Ty7 YZTI

we get

" I

* * -2 ".. . .--. 2 - ..'' > ; " -" -. " '•.' -.. ,-..- .> - '2 .. "'*' * *.-* .- °-. .- '-i .... •. , .; ';-.i 'i. ... .:

• " -' - ,. % ,, . , ,w , .i . , .,. . . .,, , . ' " " " " "." .. o "..._' . .. . ' '. '. .. •' ' '. " ." . _
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ty to the wave speed is greater than one, 
and the wave velocity which is 

-

a property of the fluid, cannot be controlled. It follows that even If

the flow away from the body is supercritical the flow near the body

will always be subcritical, and the underlying problem is really one of .

"transonic" type.

We are going to show that the equations which govern perturbations

of uniform flow have a simple form, depending on the density p and

relaxation modulus G(s) alone, and are model independent. The flow near

the body depends on the constitutive model.

The stress in a simple incompressible fluid may be decomposed into

an isotropic and a determinate part. The determinate part is the consti-

tutive equation which relates stress and deformation. In linearization

at uniform motion, the determinate stress in fluids with instantaneous

elasticity is given by an integral (see JRS, 1984)

tG(t-T)A[u(xL,-) d)]_T - _ dt 
( 1.1)-

where "

[X U-(t--)]

u i  a) u .

" -

A -u] Vu_ VuT A- + i"j

and G is smooth, positive and monotone decreasing. The speed of various

kinds of shear waves (Coleman and Gurtin, 1968, Narain and Joseph, 1982)

into a fluid of density p at rest is

(11.2)

The "Mach" number is U/C. By differentiating (2.1) with respect to t, .

holding x fixed, we find that

-
::!~i ii!

..... .... ..... . .. . -.. ..... .... ....
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exceeds one (see Eq. (2 .4 ),. Here U is the velocity of the unperturbed

uniform flow, and C is the wave velocity for propagation of shear waves

in a Maxwell fluid. Ultman and Denn (1970) did not notice that it is

precisely the vorticity which changes type. They refer to their liieari-

zation as an Oseen approximation. Oseen introduced his linearization

around uniform flow for slow viscous flow, because Stokes equations hiva

no solution for flow around bodies in two dimensions. Oseen's equations

do not change type. Ultman and Denn (1971) use Oseens approximate

method to compute subcritical flow and they say that their calculations

agree with their experiments when the fluid parameters are properly

chosen.

In a second paper, Ultman and Denn (1970) consider the supercritical

flow but they do not give experimental results and they do not discuss

or try to solve their equations. They attempt to correlate some experi-

mental observations of D. F. James (1967) with the change of type.

James observes a sudden change in the slope of the heat transfer curve

as a function of velocity. This happens at a critical velocity which for

the Polyox solution used by James, was about I cm/sec. It is not clear

from the graphs how abrupt this change of slope is, but there is a

change of slope. Ultman and Denn (1970) also suggest that the transi-

tion from subcritical to supercritical flow might explain abrupt changes

in the drag coefficient they say was observed by A. Fabula (1966).

Again, the idea is that the critical velocity at transition is the wave

speed C. They make an estimate of C from a molecular theory and corre-

late this prediction with the data of James. Of course, any such esti-

mate can at best be expected to give an order of magnitude, since the

molecular theory is coarse and the fluids used in the experiment are not

Maxwell fluids.

Recently Ambari, Deslouis and Tibollet (1984) have considered mass

transfer in the flow of a viscoelastic fluid around a cylinder. They

also find a critical value at which the mass transfer undergoes an ano-

molous transition.

Oseen's methods work because slow flow around bodies is in some

sense a perturbation of uniform motion. The case of fast flow is dif-

ferent because the uniform stream is not small, but the velocity on th.e

body must vanish. In supercritical flow the ratio of the stream velo.i-

ii ii i iiii i i i ~i i S
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Yoo and Joseph did an asymptotic analysis which give the frequency of

the oscillations and other properties of the solution. The second prop-

erty is that regions of positive and negative vorticity which are not

damped are swept out along characteristics. It would be hard to under- 0

stand these solutions from the streamline plots.

The same type of hyperbolic dynamics which Yoo and Joseph found in

channels will occur in pipes. Mark Ahrens is working on this problem.

The change of type which occurs in the center of a pipe may have appli-

cations in the problem of delayed die swell. The phenomenon of delayed

die swell is not well known. At low speeds the jet will spread near the

exit of the jet, as in Fig. 10.4(a) and 10.5(a). At yet higher speeds the

jet does not spread near the exit, the swell is delayed, as in Fig. S

1O.4(b-d). Fig. 10.5 shows a form of delayed die swell which we have

seen repeatedly in our own experiments. The delayed swell seems to

occur at a critical speed, not so different than what one might expect

from a change of type. Of course, the reason for the delayed swell is 0

not understood. The form of the jet reminds one of a hydraulic jump,

which is the shock phenomenon corresponding to shocks in gas dynamics.

11. PROBLEMS ASSOCIATED WITH THE FLOW OF VISCOELASTIC FLUIDS J's

AROUND BODIES

It is perhaps not unreasonable to think that far from the body we

have only a small perturbation of uniform motion with constant velocity -

Ue in the direction x. The body is stationary. Jew-
-X

The vorticity of all steady flows of viscoelastic fluids with in-

stantaneous elasticity which perturb uniform flow can change type.

To be precise, the linearized equations for the vorticity of flows

perturbing uniform flow vanish on states of constant vorticity and the

type of this equation in steady flow changes when the ratio of the free

stream velocity of the wave speed increases through unity. This criter-

ion for a change in type may be expressed in terms of a viscoelastic

Mach number.

Ultman and Denn (1970, 1971) consider the equations for two-dimen-

sional ateady flow of an upper convected Maxwell fluid. They linearize

at a motion with uniform velocity and zero stress, and they show that

these linearized equations change type when a viscoelastic "Mach" number

AD

~~~~~~~~~~~~~~~...•. .........° • . . =. ...... •._..... .. .. .. .. -. ..-..-. ..



(a) ( C) (1

Figure 10.4 (After Brenschede and Klein, 1970). Delayed die swell

in pol~yisobutilene solution is toluol.
D - 4Q/nR' where is the volume flow rate and R is
the pipe radius. The critical value D is 14 x 104

reciprocal seconds.
(a) D - 8 x 10' (b) D = = 15.2 x 10'
(c) D - 22.8 x 10' (d) D = 29 x 104

bS

I I "'

,[t.I•

Figure 10.5 (After H. G anKeklen, I 90) Delayed die swell in a
.5S polyicrylamlee solution In water.
ta pow speed. (b) post critical speed, . .
(c) high 8 o"ed jd'2x 0

0Q
• . . . .
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(M-)a~ G'(0) a 3" G"(0)

ax' ~ A LJ(O a ' +'(O
Tx G(70a a Y U(

UR(O) -. [GIL~a a 1II x dx. (12.14)

For the Maxwell model (11.14) we get a telegraph equation

axI ay n1 ax

We may write this telegraph equation in dimensionless form

ax 8 a 1 (12.5)

where (x,y) - (x /VL I is a scale length

0' M, H'- > 0

and .0

WUX/I

is a Weissenberg number based on T.

Equation (12.5) can be approximated by a wave equation without

damping when W and M > 1 is fixed. For this same M we may expect

rapid damping of the backward heat equation when W is very small.

The other prescribed conditions are that the vorticity must vanish

far from the plate and since v -0 on the plate,

-~on y -0, x 9 0 (12.6)ay

We need vorticity fields satisfying (12.4) or (12.5) over R' and (12.6) and

(12.3) on the plate.

* The stream function and vorticity are related by a second order

;.quat ion
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p

+ I- -C(y,x). (12.7)

We may therefore expect that corresponding to any good field ;(x,y) we

may solve (12.7) subject to the conditions that Y vanishes far from the

plate and

v -- 0 on y 0, x 0. (12.8)ax

In general, we cannot expect that for any field i(y,x)

U - - on y - 0, x k 0. (12.9)

It follows that the existence of a solution of the linearized flat plate

problem, in both the suberitical M < 1 and supercritical M > 1 case de- 5
pends on finding a special prescription of the vorticity C on the plate

(12.6) such that (12.9) is verified.

I wish now to consider the supercritical case and to indicate the

method by which our linearized problem may be resolved. It will be con-

venient to start this discussion with an analysis of the telegraph equa-

tion (12.5) for M > 1. To put this problem into canonical form we

change variables setting

5

(x,y) J [-t.'z] (12.10)

and find that C(zt) - ;(y,x) satisfies

aC 32  (12.11)
at2 at T_

We may expect that this hyperbolic problem will not allow the plate to

influence the flow upstream. We therefore seek solutions C(z,t) such

that the upstream vorticity vanishes;

C(zt) -0 for t < 0,- < z < -

This Implies that "initially"

I. -
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Z(z.o)- zt(zo) . 0 (12.12)

whereas

0

is prescribed for t > 0. Asymptotically, for large IzI we require that

Z~ 0.

The problem (12.11), (12.12) and (12.13) can be solved by Laplace

transform techniques. A well known solution of this problem with uni-

form vorticity on the plate

f(t) - H(t) - O,t<O (12.14)
1,t>O

has been given by Carlslaw and Jaeger (1963) In the form ,.

z • - o/ 2

e(zt) , (0/-1,) do ((t-z 12.15)

[z 2 fz t71 j2tz

where I, is the modified Bessel function of the first kind. The vorti-

city (-z,t) on the bottom of the plate is given by (12.15) with -z re-

placing z. This solution for flow over a flat plate was given by B. .

Caswell (1976) in a study of the effects of a leading edge singularity.

We next note that the field ;(y,x) - Z(z,t) can now be inserted into

(12.7), which is an elliptic problem leading to a nearly everywhere dif-

ferentiable V, even when C has simple discontinuities, as in Figure 1. 0

We solve (12.7) subject to (12.8), but the solution will not satisfy

(12.9). We can hope to satisfy (12.8) and (12.9) simultaneously by pre-

scribing the perfect vorticity distribution f(t) on the plate.

To get the Z(t,z,g) corresponding to different prescriptions (12.13)

of the vorticity f(t) on the plate, we could use the method of Duhamel

type integrals Introduced for start up problems by Narain and Joseph . -

(1983). For these integrals we need to superpose using the fundamental

singular solution of (12.11), (12.12) and (12.13) when .

.... 
.(t--[" (12 .16)

.--- -. ..

..... .... ..-....-.-.~.-.-....--..... ..... .... ....
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is a Dirac function. It is easy to see and not hard to prove that the

* required solution is the time derivative of' the step function problem

just derived when

~(0,) - 1 for t (1.>
0 for t S T

Using the aforementioned method I find that the solution of (12.11),-

(12,12) and (12.13) is

rt-z
C(t,z) - J (t) Tt(z,t-tr)dr eZ/ g(t-z) (12.18)

where

-z/2 z o1-a2 2_____f (z, t) e +e do.

The solution C(y,x)of

* (0,x) -.g(x), (12.19)

C(Y.0) -0

;(YX) g(- (y,x-Tr)dr exp L-!--g(x-8y)(1.0

* where 
_

9L-
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x/2 . l "

ax 2BW 11 / 2/

The amplitude of on x - ly is given by exp[- ]2. The amplitude

decays rapidly when W is small (see Fig. 12.1). 2

Turning next to the stream function, we find that the solution of

(12.7) with c(y,x) given by (12.20) and

*(x,0) =0 for x > 0 (12.21)

is

-J JR G(y,yO.x,xo)C(y.,xq)dyo dxo (12.22)

where R- is the complement to the line x > 0, y 0 0. The Green function

for this domain, vanishing on the plate is given by (10.1.40) on p. 1208

of Morse & Feshbach (1953). We have to divide their solution by 4w.

G(y,yolx,xo) - G(r,roI,,o) "

, .n/2
1 no [t

- sin sin , r < ro11 . )". -. "

where (x,y) - r(cos2,sin*)
The solution (12.7), satisfying (12.21) is given by (12.22) with

c(y,x) given by (2.20). The fluid will not slip on the plate if -

U (x, 0) when x > 0; that is,ay
O9

......................

.................................................. 2.2, .-:. . .5 .'.12 ! ' i ]- . i~ i .2 2:" : ii-,~ii: ?.:;--,2 .i.2 .. i
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-U aJ y=0 G(y,YolX.xo)r(Yo,xo)dyo dxo (12.24)
R_ R- x>O

We have to choose the prescribed plate vorticity g(x) to satisfy (12.24).

I have no guarantee that there is a g(x) satisfying (12.24). Edmond

O'Donovan is trying to find a numerical approximation for the g(x) which

satisfies (12.24).

It is probable that the approach which I have taken in this problem

can be generalized to fluids satisfying (12.4). This equation applies to

all fluids with instantaneous elasticity. Such a study would show how -

the flow depends on the kernel G(s). The Laplace transform methods used

by Narain and Joseph (1982, 1983) to study the linearized dynamics of

shearing motions perturbinq rest in viscoelastic fluids are appropriate

for this study too. As in their work I get the following problem for

the transform

C(y,w) - fe' C(x,y) dx (12.25)

where r(y,w) vanishes for large y and satisfies

dp
k(w)C i(w)

(O,W) e -  f(x) dx (12.26)

and

....... ......-. ..
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WSS

W- Lo .' G[U] d3.

One finds that

- (O)

G(O) _G'(O) + i
W W2  +0LJ

if G" is Integrable. The character of the solutions 1s determined by the

symbol of the operator. We should therefore look at the problem which

arises at large wi

G'(0) [ G(O) G'(O) d

or

[ 22 a PUG'] -

which is the transform of the equation

Cxx -x G'() - (12.27)

From this equation we expect that the solution of the present problem is

a simple wave as in Figure 12.1 with C - 0 to the left of the line

x O y on the top of the plate, and x *-Sy on the bottom plate. The

amplitude of the wave on x * y is given by
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e x PUG'(0)]

This amplitude tends to zero as G'(0) +--. When G(O) > 0 and G'(0) = -u

we have the case of singular kernels. Renardy (1982) showed that for

some special singular kernels shear waves would propagate into a fluid

at rest with the wave velocity C - /G(0)/p, with a zero amplitude at the

front and Co connection with non-zero solution across the front. These

properties, as well as the analytic smoothing of sharp fronts with small
viscous terms (small retardation times) occur in the present steady

problem as well as in the theory of propagation of waves.

Supercritical flow past a flat plate cannot be considered to be a

perturbation of uniform flow. If it is supercritical, the free stream

velocity is finite, perhaps large, but the fluid must come to rest on the

plate. Near the plate, the velocity will be small and the local "Mach"

number less than one even when M 2 pU2/G(O) > 1. The governing prob-

lem near the plate Is therefore elliptic, or at least not hyperbolic. It

may be true that when M is large the solution of the nonlinear problem

is close to the linear solution (if it exists) except in regions -immedi-

ately near the plate. This might suggest boundary layers, but that

thought should be eschewed. We should instead think of a narrow sub-

critical region near the plate which goes supercritical at the "sonic"

line which could also be close to the plate when M > > 1. We have
therefore to consider a "transonic" type of problem and not a boundary

layer type of problem. We know almost nothing about such problems for

viscoelastic fluids.

13. NONLINEAR WAVE PROPAGATION AND SHOCKS

It is well to motivate this chapter by reminding the reader of the

huge differences between linear and nonlinear theories of gas dynamics.

In the linearized theory there are no essential differences between rar-

efaction and compression waves. These waves propagate according to the

wave equation without change of form. In the nonlinear theory an impul-

sive rarefaction will be smoothed by nonlinear effects and a smooth com-

pression will shock up.

Compression waves are impossible in incompressible fluids. Instead

we may perhaps speak of waves of shear or of waves of vorticity. Very

little is known about the nonlinear effects in the flow of viscoelastic

S. ............ . .
.
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fluids. We should like to know the answers to the following questions.

We are given a constitutive equation in the class with instantaneous

elasticity: Different subclasses in this class can lead to different

results. We want some classification of results.

(i) Suppose that we are given smooth data. Is there a shock up?

(ii) When there is a shock, what variables (vorticity, velocity, dis-

placement) become discontinuous?

(iii) We are given impulsive data. Is it possible that the nonlinear

terms smooth discontinuities?

We first consider the problem of wave propagation in fluids under-

going rectilinear shear flow. The formulation, due to Coleman and Noll,

is embodied in the representations for shear flow shown in (1.2) of the

Appendix, by M. Slemrod to this paper. Coleman and Gurtin (1968), fol-

lowing earlier work on longitudinal acceleration waves in compressible

materials (1965), showed that the amplitude of a jump discontinuity in

the fluid acceleration satisfies a simple nonlinear differential equation

of Bernoulli type with coefficients determined by the instantaneous

value of the relaxation kernel at the wave and second order instantane-

ous modulus evaluated at the wave. The instantaneous value of the

relaxation kernel is designated as

G(K.0)

where K is the shear rate at the wave and G(K,) arises as the kernel of 0

the Integral representation Implied by the Riesz theorem for first func-

tional derivatives of the functional t () of (1.2) in Appendix A evalu-

ated in the weighted LhEO,-] spaces of Coleman and Noll. This kernel

reduces to G(s) when the wave advances into a region at rest. The speed

of the wave

C =  .-
K0

depends on the rate of shear where the first derivative is evaluated. In

general prot'iems the speed of waves depends on the motion. The second

order general problems the speed of waves depends on the motion. The

second order modulus is an instantaneous evaluation the second Frechet . -

derivative at the wave.

. . .

,- ., . , . . .- . - . .." .- - .- - ., ." . :.- .- '. '.. _.'. -.. ,.. -. -. ..- . -..' '. ...' .'. ,. ., .,, -.', . ..' ,,... . .... .. , .. .. ,. .. ' .
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The amplitude equation of Coleman and Gurtin is notable because it

is simple, general, rigorous and implies interesting physical results.

They showed that an initial Jump discontinuity may either decay or grow

depending on the sign and magnitude of the initial discontinuity. The

assumed jump discontinuity may blow up in finite time. The cause of this

blow up is associated with the nonlinearity. They showed that an accel-

eration wave entering into a region at rest would always decay. This is

a type of nonlinear result of category (ii) which shows that nonlinear

terms can lead to blow up. It is generally assumed that the loss of Cn

regularity (blow up) implies the formation of a jump in the n-1 deriva-

tive of velocity (shock up). The decay of acceleration waves is a result

of category (iii) which shows that nonlinear terms can force the decay

of initial discontinuities.

It was not clear how discontinuities in acceleration, which are

equivalent to shocks of the vorticity, would appear in the fluid. The

results discussed in the appendix by M. Slemrod help to clarify this

issue.

Slemrod (1978) showed that the equation of motion for the shearing

perturbation v(x,t) of a shearing motion will admit a differentiable (in

x,t) solution for only a finite time for appropriate smooth initial ye-

locity histories when the constitutive relation is

TJ< x y >  CF( e - TI/A x,t-T)d ). (13.1)

ihere a is a nonlinear odd function. The loss of differentiability is

issumed to imply the appearance of a discontinuity in v, as shock up of

.he velocity, a vortex sheet. This result is like the one proved by

,oleman and Gurtin, but implies the shock of smooth data.

In the appendix of this paper Slemrod shows that when the constitu-

ive relation is

x - e O(Vx(Xt-T)dt (13.2) I...

or a nonlinear a(-), the second derivatives of v(x,t) can blow-up when

he smooth data is given in a certain way. The shock up assumption
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which one Is obliged to associate with this blow-up of second derivatives

is the appearance of a Jump in vx , a vortex shock or an acceleration dis-

continuity. It Is interesting to note that T<x y > given by (13.2) satis-

ties a rate equation

-d TxY> + 7 (vx(xt)) (13.3)

vaguely resembling some popular models. 5

The results just reviewed show the remarkable effects of the choice

of constitutive relations.

It is possible to entertain the notion of successive shock ups from

smooth data. First we get a vortex shock from nonlinear effects associ-

ated with (13.2). This gives an acceleration discontinuity which will

lead to blow up of the vorticity if the amplitude of the vortex shock is

larger than the critical amplitude of Coleman & Gurtin. In reservation,

I wish to note that recent calculations with popular models show that

the critical amplitude can be infinite.

I think it would be interesting to see what sort of blow up results

could be obtained for shear flows of Oldroyd models with instantaneous

elasticity.

The shear flow of the Oldroyd models (6.2) are governed by the

system of first order quasilinear equations.

P

a - (a+IIhv x + - -0,

t (1-a)o - 1v T O, "x

pvt - - 0 (13.4)

where v(x,t) is the rectilinear velocity in the direction y and
<y> <xx> <y

(,'Y,t) = (T<yy>, T x , T<xY>). This can be written as

• -..- : ============. ::::-:..:-. . .. ....: .. < --.--.. -.. ..... .. .
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_q ~ ~ v - 0 0

=[o 
(-a) a-n/ ]

he characteristic directions are given by

detjAx Bx1  + PX (1-a)o - f/A] 0

here x is the wave speed. The streamlines are characteristic; x=0,

Lscause streamlines don't move. The two wavesr

o (ia-1) n/

in be identified with waves of vorticity. It is clear that the speed of

ie wave depends on how the liquid is stressed.

We should like to know if smooth initial data, given to (13.4) can

Low up. This depends on the constitutive equation, as we have already

ten. For example, the problem for the upper and lower convected

axwell models (a 2-1) cannot lead to blow up of smooth data because the

)verning problems are linear.

Johnson and Segalman (1977) have shown that (13.4), and (13.4)2 can

Integrated once:

ft___t
= -J e )'A K(s)cos(/ -a2y J ,(S' )ds')ds,

(t et5/

e. Kj- s iessI n T-af J i(s')ds')ds

1-a1

....................-. . . . . . .. . . . . .
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oe approximated by a finite series of multiple integrals:

t A(s)) (s,.,s) A (s)... A (s )ds... ds(A (s) n*n n ns=0 n odd 0-._

(2.3)

restriction to odd order follows from the isotropy condition (1.3).)

assume more is true, namely that in a manner similar to the Taylor

s expansion for an analytic function we take (2.3) to be an equality

the sum may be infinite. Choose •

Kn (Si,...,s ) -a a nne n n = 1,3,5...

a is a positive constant. (This is consistent with fluid of fading

y type [3], 16].) Finally if we define

nS

n odd

itegrate (2.3) by parts we obtain (2.1).

;onstitutive equation (2.2) is equivalent to the choice

t s
t (At(s)) * e Q ((At )ds

s=0S

Lernative motivation arises from consideration of a material of

,ype where TxY(t) satisfies the ordinary differential equation

d xy
FT Mt * TXY(t) G (v x(x't)) (2.L4)

. t, -. < t ( - , and all x; 0 < x < h , where a as before is a

ge constant. Integration of (2.4) in the usual manner for first

ordinary differential equations yields (2.2).

.~~~~............,.. ..... ....... ............ . . . .... :. i:i i: : :i :i: i i." ...,

f ' ." . . " . " , . . '. . . . . . , ' ". . " " ' , " , : " " " ' " ; " :
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t -t)--t (At (W))
s=O s-O

Il (-At Is)= s (At (), (1 1, 2).(.)

3-0 3-0

Here subscripts x,t denote partial derivatives with respect to x and t

respectively. 0

A2. CONSTITUTIVE ASSUMPTIONS

To proceed further it is necessary to make some mathematical

assumptions as to the nature of the functional t. For this analysis we

assume t has two particularly simple forms, i.e.,

t (At(s)) - e-v (xt-s)ds (2.1)
S-0 [10

and

t (At(s)) e (vx,t-s))d, (2.2)
3-0 o 0e

where a is a real valued, odd, analytic function defined on the real line

and a is a positive constant. In (2.1) we see t is a (generally) non-

linear function of the linear functional

-Ie (x,t-s)ds

In (2.2) we see that t is a linear functional of the nonlinear func-

tion o(V (Xt-s)).

A motivation for the choice (2.1) may be based on the multiple in- __

tegral expansions for t originally presented by Green & Rivlin (i] and

Chacon & Rivlin [5) for general viscoelastic materials. In (5] the

authors showed that for t continuous on an appropriate function space, t

a---:: :i: :::::::::::::: ::::::::::!: .: .: .: .::::: .:::: :::::::::::::: : :: : :::: : -: :: : ::: : : : : ::
.- ' .. ...... , -. " . .. - .. . . " . .- ..' -' , .- ' : ' ' . . .. . . .-.- .. . - . . ' ,. -. . .- - .. . .. .- .: . -... ..

1. ,,.,. ,; . '-'. , -...-.. '. ; -.- .;-,' '.;, ..- .'.-. .... .: . .:.. ....- ...-- ".....-..... ........
... . ..: " .- . - .-. _ ' . , _ _ :. _ ; . : ,.: . _ . ' . -- .:".. .-.. ,.-'--.',-.,.. . , .- ...,,. .



. . .. .". -.

76

)Ids with C' replaced by C'. D. D. Joseph observed that this may have

iportant physical consequences as now the appearance of Jump discontin-

ty in ;x may be expected, i.e. formation of a vortex shock.

At the request of D. D. Joseph I have prepared this short note ana- .

,zing the different effects of (1.1) and (1.2). The technical details of

ie breakdown proof are omitted and may be found [1].

RECTILINEAR SHEARING FLOWS

If in a fixed Cartesian co-ordinate system x,y,z, the velocity

elds of a flowing fluid body has the form

vx 0,vy VXt v z  00,= O, = v(x,t), v= 0 (1.1)

say that the motion is a rectilinear shearing flow. For such a flow

e condition of incompressibility div v = 0 is automatically satisfied.

leman & Noll [3] have shown that if the fluid is a simple fluid, then

e componehts of stress obey the relations

t

TxY(t)- t (At(s))
s=O

TX (t) - TZZ(t) s1 (At(s))

Tyy(t) -Tzz(t) 3 2 (At (s))
s-0

TX T y 0 ,(1.2)

tre A is the relative shearing history defined by

At(3) v - -Odr (0 S s S -)

t,s,,s are real valued functionals obeying the identities

S .- " .. ' ..
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APPENDIX A: BREAKDOWN OF SMOOTH SHEARING FLOW IN VISCOELASTIC -

FLUIDS FOR TWO CONSTITUTIVE RELATIONS: THE VORTEX SHEET VS. THE

VORTEX SHOCK.

AO. INTRODUCTION

The purpose of this note is to study the effect of choice of con- -

stitutive relations on shearing perturbations of steady shearing flows in

a non-linear, isotropic, incompressible, viscoelastic fluid. In an ear-

lier paper Ell, I showed that the simple constitutive relation relating

the shearing stress to the shear rate vx .

TxY(t) 0 (J e-0Tvx(x,t-)d). (0.1)
0

yields the following result:

The equation of motion for the shearing perturbation v(x,t) of a

non-trivial steady shearing motion will admit a C' in (x,t) solution for

only a finite time for appropriately chosen smooth initial velocity his-

tories. Here a is a non-linear, odd, real analytic function, o' > 0, a Is

a positive constant.

The proof of the result hinged on the fact that equations for the -

perturbed fluid motion (x,t) can be written as a non-linear hyperbolic

conservation law with linear damping. In this form the equations of p

motion are amenable to study via the use of Riemann invariants and an

argument of Lax [2]. As a side benefit from this formulation continua-

tion theory for hyperbolic equations shows that loss of C' regularity

implies J;t' + I;xI . a in finite time. ; This suggests the appearance of S

a jump discontinuity in v , i.e. formation of a vortex sheet.

Sometime after appearance of my result C.J.S. Petrie remarked to me

that a similar result could be obtained for the choice of constitutive.

relation I

TxY(t) - e-aTa(vx(x,t--))dr (0.2)

for 0,a as above. Upon working out Petrie's Idea I noticed the results

are similar but not the same. Specifically the above mentioned result
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have been smoothed. On the other hand the points near the bottom plate

which could show the development of discontinuous u/x for large time and

large W. Perhaps It is these points at which we may see the development

Of shocks of u/x are only what PT&T call "unavoidable noise." It is S

possible to find pictures, say T - 0.5, W - 1, in which one can imagine a

point of discontinuity of the slope of u/x which can be identified with a

shock in the vorticity.

I think that the results shown support the notion, already explored ,

in Sections 10 and 12, that the Weissenberg number is a measure of the

fluids elasticity and in hyperbolic problems with damping, the damping is

large when the Weissenberg number is small and vice versa. The effect

of the waves is almost immediately damped in the case W = 0.1 and is S

extraordinarily persistent when W = 500.

It would be interesting to see if and what discontinuities develop

in the squeeze flow problem when all of the prescribed data is smooth

at tO.
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An initial boundary value problem for the reduced quasilinear

system requires that one set of boundary and initial conditions. At the

boundaries y = 0 and y = H(t) we have adherence :--

u v =0 at y =0,

v 0, v -V at y =H(t).

To specify initial conditions it is enough to give the fields u and v,

that is, f(y,t) at t 0 0. PT&T set f(y,O) = -y. Hence

(uv) = (x,-y) (13.11)It-o

which is an irrotational squeeze flow with vanishing stresses and an

outflow independent of y at each x. The wave speeds (13.8) are

dy/dt C at the bottom plate
jt-o

and

dy/dt = -1 - C at the top plate.
It-0,

The velocity v - -y at t = 0 is compatible with the prescribed boundary

conditions but u = 0 on y = 0 and on y = H(t) is incompatible with u - x.

The velocity v and all the stresses are continuous as t + 0 but the ve-

locity u = 0 at the walls is incompatible with (13.9). In a linear

theory we could expect this initial discontinuity to propagate into the

interior with a decay in the magnitude of the jump in u. This does not

appear to be true in the results presented by PT&T.

In Fig. 13.2 1 have reproduced their results for the evolution of 0

-f (y,t) - u/x for R - I and increasing W. The graphs of the evolution
y

of f - v do not show interesting features and are not presented here.

I cannot find evidence for propagating discontinuities of u/x near

the top wall. The wave in u/x propagating from the top plate seems to __

..- ..
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10 0 0 0 0 0-

o0 T 0 0 0 0

0 0 fW 0 0 00

A0 0 0 TV 0 0 0

o 0 0 0 TV 0 2WT

o 0 0 0 0 fm +.VY

100 0 0 0 1 fR

W W Aho is the Veissenberg number, 8 is diagonal with entries

[0.0.W,WIW,W,RJ and D depends on I but not on its derivatives. The wave

speeds for this system -dy/dt are given as the real roots Of

det[A -2 WB]- (f) [M2(fy;)a 1 WY] 0

where M2 RU. The normal component of velocity v -f is triply charac-

teristio. The wave speeds for the vortIcity are given by the dimension--

less form of (13.8).

y f±

Numerical results of PT&T show that Y *0 as W * In such a way that I

+ WY > 0. There is no Hadamard instability.

ZS
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h(t)

y

x

02bl 111111ILILL*!"////7777

Fig. 13.1 Squeeze Flow, V > 0, h(O) -h
0

* where X33X,,T,I depend on (y,t) and p. and

p(t) 2X 2 +T~ + Rf~ + f + ff

depend only on t, and R Is the Reynolds number.

We may write the reduced problem as

_q + B q D (13.10)

where _q is the column vector whose components are 1f1pX 13 YX2,T,g] where

g f,

yI
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dt A E

- v ±V a (13.8)

where C i ,n-p is the speed of small amplitude vorticity waves into

regions of uniform motion. The wavespeed formula (13.8) shows how the

speed of vorticity for solutions of the type (13.6) depends on the point-

wise values of the normal component of velocity and the tensile stress Y

= Cyy. Every problem which can be represented in (13.6) will have wave 0

speeds for the vorticity which will satisfy (13.8). Numerical results of

PT&T suggest that for their problem Y/p + C2 > 0.

In principle, it should be possible to determine some of the effects

of nonlinearity on propagation by more careful studies of the problem 0

treated by PT&T.

Let he be the initial distance between the plates and let v be the

constant squeezing velocity

(Y(y.Vt) :: 'h,,0

are dimensionless variables, also called y and t. The configuration of

flow is shown as Fig. 13.1. The dimensionless velocity components are "

given by

(u,v) = (Xfy (y,t),f(y,t) 0

and have been made dimensionless with V. The stresses are made dimen-

sionless with nV/ho.

The dimensionless stress and pressure v are then represented by

<xx>,<yy>,T<XY>,P] + [ x2 X2,xT,Y, Y x P p ] (13.9)

-1 2

" . " .. " ." . .'_ '....'. . ., -.. '...... . . .• ................ ... . ..... .-. . . .. . " .. .-. - :.".. -
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I have analyzed their problem using some elementary hyperbolic

theory. I work with their reduced equations. The reduced equations

given by (13.10) are a consequence of representation.

[u,v] - V[-xf (y,t).f(y,t)] (13.6)
y

Here, subscripts denote differentiation. We treat the rest of the reduc-

tion later. For now, consider Eq. (6.4) with a - 1 for the vorticity

P +PU + 2pv 2!L + (pu2-a-n)

p I axat 3yat A Tx

+ 2(puv+x) + (pv2  '2; L.O.T. (13.7)

axay Y

The vorticity compatible with (13.6) satisfies

Kt
def1 au V x "

" -2 y = 2" yy •.-

x , xx

These relation: imply that

are first derivatives of w and hence of lower order. We may then write

(13.7) as

A + 2B +=L.O.T.
T ayat y-

L

where A = p, B = pv, C . pv2 - Y - . The characteristic equation for

this second order problem are given by

r -

L . ._..
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i(s) -v x(xs)

is the shear rate at the layer x at time s S t. It follows that

tt
rl e-(t-s)- t a(s)sin(v'- _

Tt A(t) I T 3 e(s')dsI)dsJ -'-

We may consider fluids with short memories, small A. After integrating

by parts we find that

t- K i(t)[1 - (1 - a2)AK2(t) A(AS)] + - 0 (13.5)

This is in the form

d T <xy + 1 T - v (X,t)k - (1 - a (Xt) + .(Al

which, up to terms O(Al2 ) is like (13.3), leading to the blow up of vorti-

city when 1 - a2 < 0.

We turn next to a still more complicated flow involving wave propa-

gation, which is originally set in two space dimensions.

N. Phan Thien and R. I. Tanner (1983), hereafter called PT&T, have

considered the problem of flow of an upper convected Maxwell model

which is induced by squeezing the fluid between infinite parallel planes.

They do not linearize or neglect terms. They call their solution exact

because they find a separable solution (13.6) which reduces the governing

three dimensional qasilinear system to a nonlinear two-dimensional

system which they integrate numerically. They have impulsive initial

data in the following sense. Initially an irrotational plug flow is pre-

scribed. The velocity v normal to the plates increases linearly from

zero at the bottom to the prescribed value at the top. At this same in-

itial Instant the velocity u parallel to the plate is squeezed out as a

plug flow. Since u must vanish at the plates, this component is pre-

scribed as discontinuous. In linear problems this discontinuity would 0

propagate and decay along characteristics. PT&T do note that their

numerical work shows wave propagation but their graphs are confusing; it

is hard to tell what is propagating and how it is propagating.

AV
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A3. SHEARING PERTURBATION OF A STEADY SHEARING FLOW 0

Let us assume a viscoelastic fluid satisfies either the constitutive

relation (2.1) or (2.2). Consider the problem when the fluid is confined

between two parallel walls of infinite extent at x - 0 and x - h. The

top wall at x - h moves with velocity V. In the absence of body and

driving forces the equation of -onservation of linear momentum (see

Coleman & Gurtin [73) becomes

m0

PVt(x.t) O(J e-csvx(x,t-s))ds)x (3.1)

for constitutive relation (2.1) and

PVt(xt) J e-ao(vx (x,t-s))x ds (3.2)

for constitutive relation (2.2). Here p is an (assumed) constant mass

density, p > 0 . Also we consider the case of no-slip boundary condi-

tions

v(O,t) = 0 , v(h,t) - V. (3.3)

Systems (3.1), (3.3) and (3.2), (3.3) admit the steady rectilintar

flow (v t(xt) - 0) solution

Vxv(x) - -
h i

To study stability of the flow against shearing perturbations we

set

v(xt) v(x,t) -

h

We observe that for relation (2.1) this implies ..

... .. -- -,----- -,: -----. .: _. ;.-:-,,- ,-:. ,..; ..-. -j --__--2.,.-. i;;i:.:- ,-...,-? :_,..',:... i". .,:/ :' i..:.'i-.? ,i-,.:i.,m
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pv (X~t) -(J e-'33;(x,t-s)d3 , V) (3.4)

with boundary condition

v(O,t) ; (h,t) =0 (3.5)

On the other hand for relation (2.2) we see that the perturbation

v(x,t) satisfies

PVt(X, t) - e -s (; (x,t-s) +~ ds (3.6)

along with boundary condition (3.5).

In either case we prescribe a smooth velocity history

*v(x~t) -v.(x,t) -. < ;S 0

*consistent with either (3.4), (3.5) or (3.5). (3.6). Thus the two fluid

* cases are governed by non-linear boundary initial history value problems.

A4. ANALYSIS OF FLOV WITH FIRST CONSTITUTIVE ASSUMPTION: STRESS

NON-LINEAR FUNCTION OF A LINEAR FUNCTIONAL OF SHEAR RATE.

We consider the perturbed flow governed by constitutive relations

(2.1). In this case the time evolution is governed by (3.4), (3.5). To

simplify matters we write

-a--

w(x,t) e J e xt-~d
00.
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An integration by parts shows

u(x,t) *v(x,t) -cj e V (X,t-s)ds0

and hence

ut - -U (14.1)
tt

If we combine (14.1) with (3.14) we find U,w satisfy the System

w t iu x

u t ;(w)~ - au ,(1.2)

with boundary conditions

*u(o,t) *u(h,t) -0 *(11.3)

and initial conditions

u(x,O) -U.(x)

w(x,O) -W.(x) 0 S x 9 h

The values of uO(x) and wo(x) are obtained from their respective defini-
tions by insertion of the given velocity history V,(x,-r), -- < T S 0

In order that the constitutive relation(2. 1) be truly non-linear we
x xMust have c"(CX 0 0 f or some real F~.Hence when the speed of top

wall is given -

V ah

we see a satisfies

. . . . ... . . .
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o(0) *0

o"O ~0 .(4.14)

We further impose the condition that (4.2) be strictly hyperbolic,

I.e. the matrix

possesses real distinct elgenvalues. Strict hyperbolicity is easily seen

to be equivalent to the condition a' > 0.

A5. ANALYSIS OF FLOW WI1TH SECOND CONSTITUTIVE ASSUMPTION: STRESS

LINEAR FUNCTIONAL OF A MN-LINEAR FUNCTION OF SHEAR RATE.

We consider the perturbed flow governed by constitutive relation

(2.2). In this case the time evolution is governed by (3.5), (3.6). Again

to simplify matters we write

a(w - . + 1) - 4]
U - vt

wv x

We note (3.6) can be written as

ft

-Ga-z 0(; (x,r)) dTr a(v (x.t)) (5.2)
I-x
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at Cj ~ Q((x,t))X (5.3)

where we have used (5.1).
From the definitions of uwabove we see

wt x

x0

with boundary conditions

u(O,t) - i(h,t) -0 ,(5.5) --

and initial conditions

U(X,O) - .(x), .

w~xO) ZO 0< x h.

Again the values of u,(x), ;;,(x) can be obtained from the respective
definition of u,w in terms of the given velocity history ;,(x,.[).

<. S 0.

Also we note that if a"(&) 0 0 for some real and when the speed
of top wall is given by

V =hrC

then 0

0(0) -0

0"(O) A 0 .(5.6)

As before the condition a' > 0 implies (5.4) is strictly hyperbolic.
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A6. A BREAKDOWN RESULT.

We have shown in sections ~4 and 5 that evolution or perturbed flow-

is governed by a system or the form

Wt x

- K(W), - LU ,(6.1)

with

U(O,t) -U(h,t) =0,

U.'x,O) M .x), W(x,O0) -W.(x) (6.2)

and

K, > 0, ic(O) -0, K"(O) A0.

Analysis Of (6.1), (6.2) has been given in 1l) We shall not repeat that

analysis but only state the releviant breakdown result.

Define Riemann invariants for (6.1) by

U O(W (6.3)-

where

1W

0(W) - J TfK(3) d3.

The transformation given by (6.3) from (U,W) R x R to (r,3) R x R is

one-one. Also we assume the initial data r(O,x) -r.(x), 3(0,X) 3.s(X) to -

be smooth functions.

Our main breakdown result is as follows.

Theorem 6.1: Suppose Ir.l, 1501 are sufficiently small and

K' (0) > 0, K"(0) > 0. If r0,x or s*,X is positive and sufficiently large

at any point x, then (6.1), (6.2) has a solution (W,IJ) In C'[O~h] x C'(O,h)

for only a finite time. A similar result holds If K"(O) <0 and r,,x or

.................................
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S,0 X 18 sufficiently negative at any point x.

Proof: See the proof of Thm. 3.1 in [1].

Standard existence theorems (see for example Section 1.8 of [8) and

Chaps. 2 and 3 of [9)) imply that under the hypothesis of Theorem 6.1 we

have lutl I+ Uj Itl + IW~x i n finite time. This suggests but
does not prove the occurrence of a jump discontinuity in U and W, I.e.

the formation Of a shock.

Also we note that since

r 

..

U ±#(W)W
x  x

x

we will have r.x large if Uo or Wox is large, sox large if Uox or -Wix s1

large, -rex large if -Uox or -Vex large, -so x large if -Uox or W9. large.

7. PHYSICAL IMPLICATIONS OF BREAKDOMI OF SMOOTH SOLUTIONS

We examine the implications of the breakdown result of Section 6

with respect to our two constitutive relations.

First we consider constitutive relation (2.1) In this case we see

that if o"(V/ah) A 0 and uo x() or WoX(X) is appropriately sufficiently

large of sufficiently negative uox (depending on the sign of a"(V/ah)),

Theorem 6.1 Implies Iuxj + jwxj i " in finite time.

Since we know from (3.6) that

u - ;(w)
t x

and from the definition of u we have

ux "Ux + aw, il..:xS

iuxl +Wxj in finite time implies itj + ,Ix - in finite time.i

Again this suggests but doesn't prove that v and hence v forms a jump

discontinuity in finite time. In this case the singular surface across

which the discontinuity In v is called a vortex sheet.

Next we consider the case of constitutive relation (2.2). In this "

case we see that if u0oxx) vtx(xO) or w.x) - V (x,O) is appropri-
xapprxopi

ately sufficiently large or sufficiently negative (depending on the sign

of o"(V/h)) Theorem 6.12 implies IvtxI IvxxI *. in finite time. Once

S. . - ... ..... ....-.-.... .-.-.... . ........ ... ... .-.... ....... -. ,-....... .. ., . ,-. -.. . .. . - , . -.. ,.-
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more this suggests but doesn't prove that either vt or vx forms a jump

discontinuity in finite time. However from the Rankine-Hugonlot jump

condition for (5.4)

dt

(d)[u (7.1) .
dt

we see

-( ,-)[vtI - - o(Vx)J (7.2)

where x - s(t) denotes the surface across which the jump occurs. Hence -: -.

if iv 1 0 0 then [a(vx)] 0 0 (since a' > 0) and by (7.2) ivt]  0 0. Con-

versely if iv I o 0 then from (7.1) we have
t

ds
-(-)v)[v - IV ]  (7.3)dt X t

and hence iv 1 0. Thus the appearance of a jump In v or v implies ax t x
jump In the other.

We define a propagating singular surface across which the accelera- r

tion vt experiences a jump discontinuity as an acceleration wave. Simi-

larly we define a propagating singular surface across which the vorti-

city w - curl(vZ,zY,yZ) - vx (xt)e experiences a jump discontinuity as a

vortex shock. Our analysis shows that for our flow the vortex shock and

acceleration waves are equivalent and can be expected to form in finite

time if constitutive relation (2.2) holds.

We thus see the remarkable effect of choice of constitutive rela-

tion. In one case (2.1) appropriately chosen initial data appears to -

force the formation of a jump in v (a vortex sheet) while in the second

case (2.2) appropriately chosen initial data suggests formation of a jump

discontinuity In vx (a vortex shock and equivalently in v (an accelera-

tion wave).

. .. .- . ........ . ..... .......... ...... ....-.-.- ...... ---.-- .- :.... .. :.
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